Симметрическая матрица - definizione. Che cos'è Симметрическая матрица
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Симметрическая матрица - definizione

КВАДРАТНАЯ МАТРИЦА, ЭЛЕМЕНТЫ КОТОРОЙ СИММЕТРИЧНЫ ОТНОСИТЕЛЬНО ГЛАВНОЙ ДИАГОНАЛИ
Симметрическая матрица

Симметрическая матрица         

квадратная Матрица S = llsikll, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: sik = ski (i, k = 1,2,..., n). С. м. часто рассматривается как матрица коэффициентов некоторой квадратичной формы (См. Квадратичная форма); между теорией С. м. и теорией квадратичных форм существует тесная связь.

Спектральные свойства С. м. с действительными элементами: 1) все корни λ1, λ2,..., λn характеристического уравнения (См. Характеристическое уравнение) С. м. действительны; 2) этим корням соответствуют n попарно ортогональных собственных векторов (См. Собственные векторы) С. м. (n - порядок С. м.). С. м. с действительными элементами всегда представима в виде: S'= ODO-1

.

СИММЕТРИЧЕСКАЯ МАТРИЦА         
квадратная матрица ||aik||, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: aik = aki.
Симметричная матрица         
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу A, что \forall i,j: a_{ij}=a_{ji}.

Wikipedia

Симметричная матрица

Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу A {\displaystyle A} , что i , j : a i j = a j i {\displaystyle \forall i,j:a_{ij}=a_{ji}} .

Это означает, что она равна её транспонированной матрице:

A = A T {\displaystyle A=A^{T}}